Call Us 07766496223
Theorem
If  
\[a\]
  has order  
\[c\]
  modulo  
\[n\]
  then for any  
\[k \ge 1\]
,  
\[a^k\]
  has order  
\[\frac{c}{gcd(c,k)}\]
  modulo n.
Proof
Suppose that  
\[a\]
  has order  
\[c\]
  modulo n. Consider  
\[a^k\]
. Let  
\[d=gcd(k,c)\]
  then  
\[c=c'd, \; k=k'd\]
  for some integers  
\[c', \; k', \; gcd(c',k')=1\]
.
Suppose the order of  
\[a^k\]
  is  
\[r\]
. Then
\[(a^k)^{c'}=(a^{dk'})^{c/d}=a^{k'c}=(a^c)^{k'} \equiv 1 \; (mod \; n)\]

Then  
\[c\]
  is a multiple of  
\[r\]
.
On the other hand  
\[a^{kr}=(a^k)^r \equiv 1 \; (mod \; n)\]
.
So  
\[kr\]
  is a multiple of  
\[c\]
,  
\[dk'r\]
  is a multiple of  
\[dc'\]
  then  
\[c'\]
  divides  
\[k'r\]
. Euclid's Lemma tells us  
\[c'\]
  divides  
\[r\]
  (since  
\[gcd(c'.k')=1\]
.
As  
\[c'\]
  is both a multiple and divisor of  
\[r\]
  it must be that  
\[c'=r'\]
.
A copnsequence is that if  
\[a\]
  is a primitive root of  
\[n\]
  so that the order of  
\[a\]
  is Euler's Totient Function  
\[\phi (n)\]
, then so is  
\[a^k\]
  as long as  
\[gcd(k, \phi (n))=1\]
.