Call Us 07766496223
Theorem (Uniqueness of Primes of Form 4k+1 as Sum of Two Squares)
The expression of a prime of form  
\[4k+1\]
  as a sum of two squares is unique except for the order of the squares.
Proof
Suppose  
\[p=a^2+b^2=c^2+d^2\]
  with  
\[a \gt b \gt 0, c \gt d \gt 0\]
.
\[a^2d^2-b^2c^2=(p-b^2)d^2-b^2(p-d^2)=p(d^2-b^2) \equiv 0 \; (mod \; p)\]

Then  
\[(ad-bc)(ad+bc) \equiv 0 \; (mod \; p)\]
.
Euclid's Lemma tells us that either  
\[p | (ad-bc)\]
  or  
\[p | (ad+bc)\]
.
Suppose  
\[p | (ad+bc)\]
. Each of  
\[a, \; b, \; c, \; d\]
  is strictly between 0 \nd  
\[\sqrt{p}\]
  so  
\[0 \lt ad+bc \lt 2p\]
. It must be the case then that  
\[ad+bc=p\]
  but then
\[p^2=(a^2+b^2)(c^2+d^2)=(ad+bc)^2+(ac-bd)^2=p^2+(ac-bd)^2\]

But then  
\[ac-bd=0\]
  and since  
\[a \gt b, \; c \gt d\]
  we must have  
\[ac \gt bd\]
  so we have a contradiction, and  
\[p | (ad-bc)\]
.
Since  
\[0 \lt a, \; b, \; c, \; d \lt \sqrt{p}\]
  we have  
\[=p \lt ad-bc \lt p\]
  so  
\[ad=bc\]
. Then  
\[a | bc\]
  but  
\[gcd(a,b)=1\]
  so  
\[a | c\]
. Putting  
\[c=ka\]
  the equation  
\[ad=bc\]
  becomes  
\[ad=bka \rightarrow d=bk\]
  and  
\[p^2=c^2+d^2=(ak)^2+(kb)^2=k^2(a^2+b^2)=k^2p\]
.
Hence  
\[k=1\]
  and  
\[a=c, \; b=d\]
.