Theorem
Ifis a basis of a topologythen the topologyis unique.
Proof
Letrepresent any set and letrepresent a collection of subsets ofSuppose is a basis for distinct topologiesand
Sinceandare distinct, at least one subsetexists such thatbutor vice versa. Since alsois a basis forandwhere
Sinceis a basis forany union of elements ofmust be a member of
This is a contradiction sinceandare distinct, henceand a basis determines a unique topology.