Theorem
Sequential compactness is a topological property but countable compactness is not.
Proof
Letandbe homeomorphic topological spaces. Then a homeomorphismfromtoexists.
Supposeis sequentially compact. Letbe a sequence inthen sinceis one to one and onto,is a sequence inSinceis sequentially compactcontains a subsequencewhich converges to a point
Since f is continuous,
Thuscontains a subsequencewhich converges to a pointandis sequentially comp-act.
To prove countable compactness is not, letbe an infinite subset ofthenis an infinite subset ofis countably compact hencehas an accumulation pointHencehas an accumulation pointandis countably compact.