Call Us 07766496223
The values of some trigonometric function is not defined for some arguments, but we can analyse the functions at those value using limits.
For example, as  
\[\theta\]
  approaches  
\[\pi /2\]
  from below,(written  
\[lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}-{}}}\]
)  
\[tan \theta \rightarrow \infty\]
.
We write  
\[lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}-{}}} tan \theta = \infty\]

Similarly  
\[lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}+{}}} tan \theta = - \infty\]

\[lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}-{}}} sec \theta = lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}-{}}} \frac{1}{cos \theta} = \infty\]

\[lim_{\theta \rightarrow 0} sin \theta = 0\]

\[lim_{\theta \rightarrow 0} cos \theta = 1\]

\[lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}+{}}} sec \theta = lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}+{}}} \frac{1}{cos \theta}= - \infty\]

\[lim_{\theta \rightarrow {\frac{\pi}{2}}^{{}+{}}} cosec \theta = lim_{\theta \rightarrow 0^{{}+{}}} \frac{1}{sin \theta} = - \infty\]

\[lim_{\theta \rightarrow 0^{{}+{}}} cosec \theta = lim_{\theta \rightarrow 0^{{}+{}}} \frac{1}{sin \theta} = \infty\]

Three very useful limits are
\[lim_{\theta \rightarrow 0^{{}-{}}} \frac{sin \theta}{ \theta} = lim_{\theta \rightarrow 0^{{}+{}}} \frac{sin \theta}{ \theta} = 1\]

\[lim_{\theta \rightarrow 0^{{}-{}}} \frac{tan \theta}{ \theta} = lim_{\theta \rightarrow 0^{{}+{}}} \frac{tan \theta}{ \theta} = 1\]

\[lim_{\theta \rightarrow 0} sin \theta = lim_{\theta \rightarrow 0} tan \theta = lim_{\theta \rightarrow 0} \theta\]