Call Us 07766496223
What are the turning points, if any of the graph  
\[y= \frac{x^2+5x+4}{x^2-5x+4}\]
?
We can find the turning points by solving  
\[\frac{dy}{dx}=0\]
.
Differentiating  
\[\frac{dy}{dx}= \frac{(x^2-5x+4)(2x-5)}-(x^2+5x+4)(2x+5){(x^2-5x+4)^2}= \frac{-10x^2+40}{(x^2-5x+4)^2}\]

Setting  
\[\frac{dy}{dx}=\frac{-10x^2+40}{(x^2-5x+4)^2}\]
  implies  
\[10x^2+40=0 \rightarrow x^2 =4 \rightarrow x = \pm 2\]
.

turning points