Call Us 07766496223
Suppose we have a function  
\[f(x)=\frac{p(x)}{q(x)}\]
  where  
\[p(x), \: q(x)\]
  are polynomials.
We can find the asymptotes by analysing
1. The zeros of  
\[q(x)\]
.
2. The behaviour of  
\[\frac{p(x)}{q(x)}\]
  as  
\[x \rightarrow \infty\]
  and  
\[x \rightarrow - \infty\]
.
Example:  
\[f(x)=\frac{x^3-x}{x^2-4}\]
.
The denominator  
\[x^2-4=(x+2)(x-2)\]
  has zeros and asymptotes at  
\[x=-2, \: x=2\]
.
As  
\[x \rightarrow \infty\]
,
\[lim_{x \rightarrow \infty} f(x)= lim_{x \rightarrow \infty} \frac{x^3-x}{x^2-4} =lim_{x \rightarrow \infty} \frac{x-x/x^2}{1-4/x^2}=x\]
.

asymptoes by looking at limits,/P>