Call Us 07766496223
The curvature of a curve  
\[y=f(x)\]
  is given by  
\[\kappa = \frac{\frac{d^2y}{dx^2}}{(1+ (\frac{dy}{dx})^2)^{\frac{3}{2}}}\]
.
Sup[pose a hyperbola has equation  
\[xy=K\]
  then  
\[y=\frac{K}{x}\]
  and  
\[\frac{dy}{dx}= - \frac{K}{x^2}\]
  and  
\[\frac{d^2 y}{dx^2}= \frac{2K}{x^3}\]
.
Then  
\[\kappa = \frac{\frac{2K}{x^3}}{(1+(- \frac{K}{x^2})^2)^{\frac{3}{2}}}= \frac{Kx^3}{(x^4+K^2)^{\frac{3}{2}}}\]
.
The degree of the denominator is 6 and the degree of the denominator is 4, so as  
\[x \rightarrow \infty\]
  the curvature tends to zero.