Call Us 07766496223
The curvature of a curve  
\[y=f(x)\]
  is given by  
\[\kappa = \frac{\frac{d^2y}{dx^2}}{(1+ (\frac{dy}{dx})^2)^{\frac{3}{2}}}\]
.
Sup[pose a semi cubical parabola has equation  
\[y^2=a^2x^3\]
  then  
\[y=a x^{\frac{3}{2}}\]
  and  
\[\frac{dy}{dx}=\frac{3a}{2} x^{\frac{1}{2}}\]
  and  
\[\frac{d^2 y}{dx^2}= \frac{3a}{4}x^{ - \frac{1}{2}}\]
.
Then  
\[\kappa = \frac{\frac{3a}{4}x^{ - \frac{1}{2}}}{(1+(\frac{3a}{2} x^{\frac{1}2})^2)^{\frac{3}{2}}}= \frac{6a}{\sqrt{x} (4+9a^2x)^{\frac{3}{2}}}\]
.
The degree of the denominator is 6 and the degree of the denominator is 4, so as  
\[x \rightarrow \infty\]
  the curvature tends to zero.