Solving Homogeneous Differential Equations

An expression  
\[f(x,y)\]
  is homogeneous if  
\[f(tx,ty_=t^nf(x,y)\]
  for some  
\[n\]
. If  
\[n=0\]
  then we can write  
\[f(x,y)\]
  as a function of one argument  
\[f(1,y/x=v)\]
. We can use this to solve homogeneous differential equations.
Example  
\[\frac{dy}{dx}= \frac{y^3-2x^3}{xy^2}\]
.
\[ \frac{(ty)^3-2(tx)^3}{(tx)(ty)^2}= \frac{y^3-2x^3}{xy^2}\]
.
Let  
\[y=vx\]
  then  
\[\frac{dy}{dx}=v+ x \frac{dv}{dx}\]
.
The equation becomes  
\[v+ \frac{dv}{dx} = \frac{(vx)^3-2x^3}{x(vx)^2}=\frac{v^3-2}{v^2} \rightarrow x \frac{dv}{dx}=-\frac{2}{v^2}\]
.
Separating variables gives  
\[v^2 \frac{dv}= - \frac{2}{x} dx \rightarrow \int v^2 \frac{dv}=- 2 \int \frac{2}{x} dx \rightarrow \frac{v^3}{3}=-2 lnx+c\]
.
Using  
\[y=vx \rightarrow v= y/x\]
  gives  
\[\frac{y^3}{3x^3}=-2lnx+c \rightarrow y^3=3x^3(c-2lnx)\]
.

Add comment

Security code
Refresh