Call Us 07766496223
For what values of  
\[n\]
  is  
\[{}^nC_3 - {}^{2n}C_2 \gt 0\]
?
\[{}^nC_3= \frac{n!}{3!(n-3)!}=\frac{n(n-1)(n-2)}{6}\]

\[{}^{2n}C_2= \frac{(2n)!}{2!(2n-2)!}=\frac{2n(2n-1)}{2}\]

Then  
\[\frac{n(n-1)(n-2)}{6} - \frac{2n(2n-1)}{2} \gt 0\]

\[\frac{n}{6}((n-1)(n-2)-6(2n-1)) \gt 0\]

\[\frac{n}{6}(n^2-3n+2-12n+6) \gt 0\]

\[\frac{n}{6}(n^2-15n+8) \gt 0\]

The quadratic inside the brackets is positive for  
\[n \ge 15\]
  so (1) is true for  
\[n \ge 15\]
.