Minimizing and Maximizing a Quadratic

To find the maximum or minimum vale of a quadratic function, we can complete the square.
Example:  
\[f(x)=x^2+6x-5\]
.
Complete the square by writing in the form  
\[(x+a)^2+b\]
.
Expanding the brackets if this expression gives  
\[ax^2+2ax+a^2+b\]
.
Equate this to the quadratic:  
\[x^2+6x-5=x^2+2ax+a^2+b\]
.
Hence  
\[2ax=6x \rightarrow a=3, \: -5=a^2+b \rightarrow b=-5-a^2=-5-3^2=-14\]

The completed square form is  
\[(x+3)^2-15\]
.
The minimum value of the quadratic is -14, occurring at  
\[x+3=0 \rightarrow x=-3\]
. The function has no maximum (is unlimited).
Example:  
\[f(x)=10+8x-x^2\]
.
Complete the square by writing in the form  
\[a-(x+b)^2\]
.
Expanding the brackets if this expression gives  
\[a-x^2-2bx-b^2\]
.
Equate this to the quadratic:  
\[10+8x-x^2=a-x^2-2bx-b^2\]
.
Hence  
\[-2bx=8x \rightarrow b=-4, \: 10=a-b^2 \rightarrow a=10+b^2=10+(-4)^2=26\]

The completed square form is  
\[26-(x-4)^2\]
.
The maximum value of the quadratic is 26, occurring at  
\[x-4=0 \rightarrow x=4\]
. The function has no minimum.
Example:  
\[f(x)=10+8x-2x^2\]
.
Complete the square by writing in the form  
\[a-b(x+c)^2\]
.
Expanding the brackets if this expression gives  
\[a-bx^2-2bcx-bc^2\]
.
Equate this to the quadratic:  
\[10+8x-2x^2=a-bx^2-2bccx-bc^2\]
.
Hence  
\[-2x^2=-bx \rightarrow b=2, \: 8x=-2bcx \rightarrow c=8/(-2b)=-2\]

\[10=a-bc^2 \rightarrow a=10+bc^2=10+2 \times (-2)^2=18\]
.
The completed square form is  
\[18-2(x-2)^2\]
.
The maximum value of the quadratic is 18, occurring at  
\[x-2=0 \rightarrow x=2\]
. The function has no minimum.

Add comment

Security code
Refresh