Call Us 07766496223
Let  
\[V\]
  be a vector space over a field  
\[F\]
. The annihilator of a subspace  
\[W\]
  of  
\[V\]
  is the set  
\[W^0\]
  of all linear functionals  
\[f: V \rightarrow F\]
  such that  
\[f( \alpha)=0\]
  for all  
\[\alpha \in W\]
.
Obviously the zero function is in  
\[W^0\]
.
Also, if  
\[\alpha , \; \beta \in W^0, \; a, \; b \in F\]
  then
\[f( a \alpha + b \beta ) = a f( \alpha ) + b f( \beta )=0 \rightarrow a \alpha + b \beta \in W^0\]

\[W^0\]
  is closed under addition and scalar multiplication, so the set  
\[W^0\]
  is a subspace of  
\[V^*\]
, the space dual to  
\[V\]
.
To find the annihilator for
\[f_1(x_1, \; x_2, \; x_3, \; x_4)=x_1+2x_2+2x_3+x_4\]

\[f_2(x_1, \; x_2, \; x_3, \; x_4)=2x_2+x_4\]

\[f_1(x_1, \; x_2, \; x_3, \; x_4)=-2x_1-4x_3+3x_4\]

We solve the simultaneous equations
\[x_1+2x_2+2x_3+x_4=0\]
  (1)
\[2x_2+x_4=0\]
  (2)
\[-2x_1-4x_3+3x_4=0\]
  (3)
(1)-(2) gives the system
\[x_1+2x_3+=0\]
  (4)
\[2x_2+x_4=0\]
  (5)
\[-2x_1-4x_3+3x_4=0\]
  (6)
(6)+2(1) gives the system
\[x_1+2x_3+=0\]
  (7)
\[2x_2+x_4=0\]
  (8)
\[3x_4=0\]
  (9)
Hence  
\[x_4=0\]
  then from (5)  
\[x_2=0\]
. In (1) put  
\[x_3=s\]
  then  
\[x_1=-2s\]
  so that vectors of the form  
\[\begin{pmatrix}-2s\\0\\s\\0\end{pmatrix}\]
  are annihilated by the functionals above.