Call Us 07766496223
To find the square root of the surd  
\[10+ 4 \sqrt{6}\]
  let  
\[(a+b \sqrt{6})^2=10+4 \sqrt{6}\]
.
Expand the brackets  
\[a^2+2ab \sqrt{6} +6b^2=10+4 \sqrt{6}\]
.
Not equate the integers and the square roots to get simultaneous equations.
\[a^2+6b^2=10\]

\[2ab=4 \rightarrow ab=2\]

Since we are looking for integer solution, the second equation gives  
\[a= \pm 1, \: b= \pm 2\]
  or  
\[a= \pm 2, \: b= \pm 1\]
&.
Only  
\[a= \pm 2, \: b= \pm 1\]
  fits the first of the simultaneous equations, so the solutions are  
\[a=-2, \: b=-1\]
  or  
\[a=2, \: b=1\]
.